
SoD-Toolkit: A Toolkit for Interactively Prototyping and
Developing Multi-Sensor, Multi-Device Environments

Teddy Seyed, Alaa Azazi, Edwin Chan, Yuxi Wang, Frank Maurer
University of Calgary, Department of Computer Science
2500 University Drive NW, Calgary, Alberta, T2N 1N4

{teddy.seyed, alaa.azazi, edwin.chan, yuxwang, frank.maurer}@ucalgary.ca

Figure 1. The SoD-Toolkit consists of (a) numerous devices and sensors that are supported by (b) software tools and components

providing information that facilitates (c) spatial interactions between devices and the environment.

ABSTRACT
As ubiquitous environments become increasingly
commonplace with newer sensors and forms of computing
devices (e.g. wearables, digital tabletops), researchers have
continued to design and implement novel interaction
possibilities. However, as the number of sensors and devices
continues to rise, researchers still face numerous
instrumentation, implementation and cost barriers before
being able to take advantage of the additional capabilities. In
this paper, we present the SoD-Toolkit – a toolkit that
facilitates the exploration and development of multi-device
interactions, applications and ubiquitous environments by
using combinations of low-cost sensors to provide spatial-
awareness. The toolkit offers three main features. (1) A “plug
and play” architecture for seamless multi-sensor integration,
allowing for novel explorations and ad-hoc setups of
ubiquitous environments. (2) Client libraries that integrate
natively with several major device and UI platforms. (3)

Unique tools that allow designers to prototype interactions
and ubiquitous environments without a need for people,
sensors, rooms or devices. We demonstrate and reflect on
real-world case-studies from industry-based collaborations
that influenced the design of our toolkit, as well as discuss
advantages and limitations of our toolkit.
Author Keywords
Sensors; Toolkit; Kinect; Cross-device interactions; Gestural
Interaction; Multi-Surface; Prototyping.
ACM Classification Keywords
H.5.2. Information Interfaces. User Interfaces – input
devices and strategies, prototyping.
INTRODUCTION
The consumer space of computing technologies is
experiencing a dramatic explosion of different size and form
factors for devices (e.g. wearables, multi-touch wall
displays). The capabilities of these devices can be expanded
significantly when used collectively with other devices and
sensors, effectively creating multi-device ubiquitous
environments. Ubiquitous environments provide people with
access to their information across many of their devices, with
some devices being spatially aware of other devices in the
environment. Spatial awareness in ubiquitous environments
is directly linked to the sensors (either dedicated or device-
based) and further magnifies existing challenges as to how
information and tasks can be performed effectively across

a

a a

a

b

c

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITS 2015, November 15–18, 2015, Funchal/Madeira, Portugal.
Copyright 2015 © ACM 978-1-4503-3899-8/15/11...$15.00.
http://dx.doi.org/10.1145/2817721.2817750

171

different types of devices, within varying degrees of spatial
awareness [32].

Research in ubiquitous environments primarily focuses on
novel interaction forms between people and a set of devices
[41] (e.g. digital tabletops, mobile devices, smart watches),
with proxemics being a common method of conceptualizing
the interaction space [1, 8]. As different form factors for
devices becomes commonplace and the capabilities of
sensors increase, novel forms of explorations between
different devices (e.g. a Google Glass and a Smart Watch) is
still fairly limited in the context of spatially-aware ubiquitous
environments. Furthermore, exploration into real-world
scenarios also faces limitations, much of which arises from
the difficulty in building multi-device, spatially-aware
environments, as many existing development kits are limited
in support for different multi-sensor configurations, multi-
device platforms and cross-connectivity and typically require
complex software and hardware setups [13].

To bridge the gap and allow for richer explorations into
spatially-aware ubiquitous environments, we introduce the
Society of Devices (SoD) Toolkit (or SoD-Toolkit), a toolkit
that facilitates exploring and developing multi-device
applications and interactions in spatially-aware ubiquitous
environments (Figure 1). Overall, our primary research goal
was to allow for novel explorations of different types of
multi-device, spatially-aware (through multi-sensor fusion)
ubiquitous environments that can be augmented with a
multitude of newer sensors and device platforms. To address
this goal, our toolkit abstracts sensor information from a
multitude of sensors into a “plug and play” architecture,
allowing researchers and developers to seamlessly fuse
sensor information and utilize commercially available off-
the-shelf tracking technologies to provide spatial awareness
in ubiquitous environments. Researchers and developers can
also create additional modules for future sensors through the
modular architecture of the toolkit. The toolkit also provides
a number of client libraries that are built upon existing
operating systems and platforms which include iOS,
Android, Windows, as well as web-based technologies such
as HTML5, Node.js and Javascript. This allows for a wide
range of skill sets and experience, letting researchers and
developers implement and design interactions and ubiquitous
environments in languages they are comfortable with,
reducing many common platform, language, technology and
device barriers [28]. In addition, the toolkit offers tools for
researchers and developers to visualize and prototype
interactions within varying levels of spatially-aware
ubiquitous environments (due to limited hardware
availability) or without the need of specialized hardware
entirely. This reduces a significant hardware and cost barrier
for researchers and developers, and can assist in more
widespread research and application development for
ubiquitous environments in both the research and consumer
space.

The remainder of this paper, is organized as follows. We first
review related work and then introduce the design of the
SoD-Toolkit, including its key features, architecture and
components.

Next, we describe two real-world domain-specific case
studies that demonstrate the flexibility of the toolkit, how
they influenced the design rationale of the toolkit and lessons
we learned. This is followed by a discussion and reflection
on the design and features of the toolkit compared to other
approaches. Finally, we conclude this paper describing
limitations and future work.
RELATED WORK
SoD-Toolkit is inspired by Weiser’s vision of ubiquitous
computing [41] and built upon prior work in three areas of
research: (1) Proxemics and Ambient Interactions, (2) Multi-
Surface Interactions and (3) Application Programming
Interfaces (APIs) and Toolkit designs.
Proxemics and Ambient Interactions
The research space of proxemic interactions is extremely rich
and well explored. Greenberg et al. conceptualized
proxemics in the context of ubiquitous environments with a
number of investigations that focused on spatial relationships
between users and objects, specifically applying five
proxemic dimensions: orientation, distance, motion, identity
and location [8]. The intention of much of the research in this
space is to “leverage people’s natural understanding of their
proxemic relationships to manage the entities that surround
them” [23]. Applying these proxemic theories to sensors in
ubiquitous environments was further explored by Ballendat
et al, who used sensors to detect people and their devices,
and better understand different types of interactions (i.e.
implicit and explicit) [1]. Follow-up work by Marquardt et
al. examined the relationships between people in closer
spaces through F-formations and micro-mobility and
sociological constructs [25].

Marquardt and Greenberg also identified major challenges
for proxemics, which included providing meaningful
feedback, managing privacy and security and establishing
connections between different types of devices [22].
Establishing connections with different types of devices was
the focus of early work in proxemics by Vogel and
Balakrishnan, who explored proxemics in relation to public
ambient displays [38]. They defined four discrete areas in
front of devices, similar to Edward Hall’s proxemic zones
surrounding a person [7]. In more recent years, research
focused on devices such as whiteboards [15, 31] and other
forms of displays [35].

While a majority of proxemics research has been heavily
device-centric in relatively small or enclosed spaces,
proxemics in larger more ambient spaces (and not around
smaller displays) has been less researched. Active Badge by
Want et al., is an early example of exploring larger scale
proxemics [40]. Their system uses a beacon sensor to track
position of users in a work environment. UbER Badge by

172

Laibowitz et al is another example, whose system uses
proxemic badges [19]. The badges are used to facilitate
social interaction in various large meetings. In the context of
a ubiquitous home, the EasyLiving project explored multi-
room proxemics by combining a number of technologies to
track people and their devices on a larger scale [2]. Research
into proxemic interactions in larger and more ubiquitous
spaces is directly tied to different types of tracking
technologies, a large research area within ubiquitous
environments itself. SoD-Toolkit builds upon many of the
concepts in proxemics and ambient spaces with a goal of
providing lightweight tools and libraries for developing and
exploring interactions and applications in larger scale
ubiquitous environments and domains, without researchers
and developers being restricted in room size or choice of
sensors.
Multi-Device Interactions
Multi-device interactions with a number of different device
configurations is a rapidly growing research area,
particularly with newer form factors of devices increasing in
the consumer market (e.g. wearables). A major task in multi-
device interactions involves the movement of information or
content from one device to another [32]. Much of the early
work in multi-device interactions is based upon Rekimoto’s
Pick and Drop, where pen input is synchronized across
multiple computers, allowing a user direction manipulation
of content between screens [30]. Hinckley explored the
notion of bumping tablets and stitching tablets together (via
pen stroke across displays) as multi-device interactions for
transferring content [11, 2]. Lucero et al followed a similar
approach, but instead used a pinching gesture across multiple
mobile devices [21]. In these types of multi-device
interactions, input is typically synchronized to facilitate
smooth interaction and information transfer [3].

Multi-device interactions can also be impacted by spatial
awareness and proxemic relationships [3]. Numerous
sensors are employed to provide positioning and tracking of
devices (and users) to take advantage of spatial relationships.
Kortuem et al. used this approach when creating novel spatial
widgets for user interfaces [17]. Kray et al., used a digital
tabletop as a center of mediation for proxemic relationships
between mobile devices [18]. More general work in these
types of interactions were explored by Marquardt et al with
the gradual engagement pattern, that maps device-to-device
proximity as a function of different levels of information
exchange [22]. LightSpace by Wilson and Benko [42], uses
spatial awareness for interactions between and on physical
surfaces.

Dividing information and interfaces across multiple devices
results in interactions that are distributed [3]. The iLand
system by Streitz et al [37] is an early example of interactions
distributed in a ubiquitous environment. Roomware is
another example that inter-connects smart artifacts in a room,
to augment both individual and collaborative tasks [36].
More recently, interactions between newer forms of devices

such as wearables has begun to appear in the research
literature. Chen et al., explored interaction techniques and
gestures for distributed interactions between a watch and
smartphone [3]. In a similar fashion, Mayer et al. [26]
explored head-mounted display to interact with objects
within view of a user. Overall however, distributed
interaction techniques for wearables and newer forms of
devices is still extremely underexplored [3, 13, 39, 44].

Much of this work indicates the potential interaction
techniques for ubiquitous environments, however a
significant amount of implementation work is repeated for
interactions that are synchronized, spatially-aware or
distributed. SoD-Toolkit easily allows for the exploration of
these types of interactions (or combinations thereof) and can
facilitate researchers in exploring unconventional and yet-to-
be explored multi-device spatially-aware interactions (e.g.
between a head-mounted display and a smart watch).
Application Programming Interfaces and Toolkits
A significant amount of recent research has explored creating
multi-device toolkits, primarily designed to overcome
different aspects of the engineering challenges that come
with building ubiquitous environments. Toolkits, such as
Conductor [9] and Panelrama [43] and others [4, 16, 33],
focus specifically on multi-device application development
through web-based interfaces. XDStudio also supports cross-
device application development, through the use of a GUI
builder [27].

Figure 2. An overview of the architecture of the SoD-Toolkit

173

The Proximity Toolkit is the canonical example of a toolkit
focused on larger ubiquitous spaces [23]. The toolkit gathers
data from various tracking sensors to allow for sensor fusion,
and provides an easily accessible API. It also allows for
interactions to be observed via a visual tool. A major
challenge with the toolkit however, is its reliance on high-
end tracking systems [27] that are ideal for prototyping but
not feasible in real-world deployments [28] and its limited
support for additional sensors. This inspired further work,
such as XDKinect [28] which uses a single Kinect sensor to
mediate interaction between different devices and also
allows proxemic interaction and multi-modal input. In
toolkits such as these, enabling multi-device interactions in
ubiquitous environment requires knowledge about presence
and position of devices, typically provided by a variety of
sensors. Numerous approaches have been taken in the
research literature, such as magnet based tracking [14], radio
tracking [21] and sensor fusion approaches [23]. Much of the
work in prototyping ubiquitous environments also faces
issues of cost (for sensors and devices) and room size,
making it difficult for researchers to properly explore novel
types of ubiquitous environments and multi-device
interactions.

Implementing ubiquitous environments that are deployable
in real-world environments still requires substantial
engineering efforts for researchers and developers. It is still
possible to build applications for different devices, with
different sensors in ubiquitous environments, but the effort
required prevents richer explorations [29]. In contrast, SoD-
Toolkit provides support for exploring multi-sensor, multi-
device ubiquitous environments by providing (1) a “plug and
play” architecture multi-sensor fusion, (2) native client
libraries for major device, sensor and UI platforms and (3)
tools that allow rapid prototyping without the need for
people, sensors, rooms or devices.
SOD-TOOLKIT
In this section, we provide an overview of the SoD-Toolkit
architectural components, its visualization and prototyping
tool, as well as its multi-sensor fusion approach to create
larger ubiquitous environments. To facilitate real-world
deployments and novel explorations of ubiquitous
environments, we primarily focused on off-the-shelf sensor
hardware and common devices, as well as free and open
source software. Our source code is also freely available to
download as open source1.
Architecture
The software architecture of SoD-Toolkit is composed of
several components (Figure 2) but primarily, we discuss: (1)
client libraries, (2) the locator service, and (3) the central
server and communications module.

1 SoD Toolkit - http://sodtoolkit.com/

Client SDK Libraries
The client SDK libraries have two primary functions: (1)
they provide necessary information for spatial awareness in
the environment, depending on the sensor or device and (2)
provide a platform to be built upon for native application
development. Within each client library, a sensor module
captures and sends data to the locator service frequently
(discussed in the next section) and the data captured varies,
depending on device or sensor type. The libraries support:

1. Various form factors of devices such as digital tabletops,
wall displays, smart watches, head mounted displays and
mobile devices (regardless of implementation platform). If
a device has built in sensors (e.g. accelerometers,
gyroscopes), this information is sent over the network to
the locator service, which is discussed in the next section.
Due to the modular nature of the architecture, spatial
information from a device is easily fused with other
supported sensors in the environment. For example, we
allow for the position and orientation of a device to be
determined by fusing skeletal information of a user (from
a Microsoft Kinect) with orientation of a device (from
gyroscopes and accelerometers). For devices that are
stationary (e.g. a wall display), we allow researchers and
developers to set the physical location in space, through
the visualization tools we provide, as we discuss later.

2. JS web client that is both platform and browser agnostic,
deriving information from a device if it has sensors
available. This client is similar to the platform specific
device clients, however, this allows for support of web-
based multi-sensor, multi-device ubiquitous
environments, which is not common in many toolkits.

3. The Microsoft Kinect provides skeletal, position, identity
and gestural information through its available skeletal
stream. The Kinect client library supports a single
Microsoft Kinect (version 1 or 2) and sends information
over the network to the locator service at a rate of 30
skeleton frames per second. A single Kinect sensor has a
tracking range from 1.2 to 4.5 meters, which creates
difficulties when trying to create larger ubiquitous
environments. We address this by allowing multiple
Kinects to track users and use sensor fusion to expand the
tracking area, create novel tracking areas, as well as
improve tracking accuracy. We discuss this sensor fusion
in the Sensor Fusion approach section. Additionally, our
Kinect client currently supports the “grab” and “release”
gestures.

4. The Leap Motion provides detailed finger tracking of a
user. Overall the sensor provides a more fine grained level
of tracking that typically needs to be paired with a sensor
that covers a larger area (e.g. Microsoft Kinect) to provide
meaningful interactions. For example, if a user is further
away from a Kinect and close to a wall display that isn’t
touch enabled, but is connected to a Leap motion, the
locator service interprets the position of the user and

174

prioritizes sensor information from the Leap motion over
potentially inconsistent Kinect skeletal data, particularly
for skeleton and joint data.

5. Apple’s iBeacon which provide coarse grained positional
information. The sensor provides position information of
a device (either Android or iOS) or person (a person must
have an iBeacon tag) in the form of close, near or far.
While the sensor doesn’t provide as accurate tracking as a
Kinect sensor, it can facilitate a larger ubiquitous space
and server as a mediator, transitioning between high and
low spatially-aware regions.

All clients for sensors and devices support native
development platforms which include Windows (C#), iOS
(Objective-C and Swift), Android (Java) and HTML5/JS, as
well as support for popular IDEs (Microsoft’s Visual Studio,
Android Studio and Apple’s Xcode), significantly reducing
start-up effort for researchers and developers. For other
programming languages, environments, developers are able
to write wrappers over the libraries and APIs we provide. We
also provide a set of example applications using different
sensors and devices to illustrate code required to implement
novel spatially-aware multi-device interactions (e.g. “flick”
to device) or multi-sensor ubiquitous environment.
Locator Service
The Locator service is the hub that amalgamates spatial
information from different sensors and devices, allowing the
SoD-Toolkit to build multi-sensor spatially-aware ubiquitous
environments. Information that is tracked includes different
types of entities, such as sensors, devices (as well as their
orientation) as well as users in the room. The locator service

processes raw positional data from device and sensor clients
that are distributed over the network, and transforms the data
from a device-specific coordinate space into a locator service
coordinate space, while also building higher level
information about the state of the environment and the
relationships between entities. Additionally, all entities that
are tracked and processed by the locator service are in 3D.

As the locator service maintains position and distance
between all entities, proxemic functions are readily available
for researchers and developers to build upon. These
functions include querying and filtering entities based on
distance or within a certain distance range, and whether an
entity is in the field of view of another entity, similar to [23].
We also allow researchers and developers to dynamically
change proxemic properties of entities (e.g. location and
orientation) through our visualization tool that we discuss in
the next section.

The locator service uses an event-driven design, where
clients subscribe to events that occur in the locator service,
such as the proxemics previously discussed. For example, a
wall display client can subscribe to an event that allows it to
be aware of when a user approaches a certain range (similar
to [23]) or when other entities are pointing in its direction.
Lastly, the locator service also maintains information about
data points, an entity unique to the SoD-Toolkit. The data
point allows data to be assigned to specific physical locations
in the room (through code or the visualization tool) and also
supports proxemic properties already available to other
entities. For example, a user can create virtual information
spaces with different types of data in regions of a room or

Figure 3. The visualization and prototyping tool for the SoD-Toolkit. (a) The tracked environment, (b) Entities tracked in the
environment, (c) List of available entities and their current state, as well as clients currently connected in the environment.

a

b

c

175

assign data to physical objects (e.g. a table) that can be
interacted with via gestures or a device-based interactions.

Central Server and Networking
The central server is built into the locator service, and
follows a client-server architecture. The server is
implemented using the highly scalable and efficient Node.js
platform and the underlying communication between the
server and client libraries (on all platforms) use the
Socket.IO networking module. These components are based
upon the WebSocket protocol, which uses duplex
bidirectional communication with significantly less
overhead than other traditional methods based on HTTP. All
information and data exchanged between the server and
clients uses the standard JSON format.

Through the modular design of the networking and client
library components, the SoD-Toolkit allows researchers and
developers to easily extend support for future devices and
sensors with minimal development effort. As we discuss in
the upcoming case studies section, this was a direct result of
collaboration with industry partners building real-world
deployable ubiquitous environments.
Visualization Tool
The visualization tool for the SoD-Toolkit (Figure 4) has
three primary functions, (1) to allow researchers and
developers to monitor and understand entities – sensors,
users, data points and devices – that are being tracked in the
environment, as well as provide the state of fused sensors,
(2) to allow for quickly prototyping ubiquitous environments
without the need for hardware, people or room space and (3)
maintain calibration data for multiple sensors (discussed in
the next section).

In the visualizer tool, an overview list is provided, detailing
the connected clients in the system, a list of available sensors
in the environment, people and details on their location
information, pairing state and if they currently hold any data,
a list of devices and according details, and finally the location
of data points and what data is contained in the data point.
All entities that are visible in the tool, are user moveable
components and easily configurable, allowing researchers
and developers to physically remap sensors in the
environment and dynamically change the layout of the
environment with no additional code-required.

The tool also allows for quickly prototyping environments
by allowing sample sensor and device clients to be created
and connected into the system. This allows researchers and
developers to conceptually build applications, environments
and multi-device interactions independent of hardware and
sensors and physical space. However, should they later
decide to add in real-world sensors and hardware into their
virtual environment, their built application or environment
will already support the hardware. Furthermore, researchers
and developers can also prototype mixed fidelity ubiquitous
environments, allowing for a mixture of real and virtual
sensors and devices (e.g. a virtual leap motion and a real-
world Kinect sensor, with a fixed virtual wall display).
Overall, the visualization tool is meant to be used throughout
the development process – from development to deployment.
Sensor-Fusion Approach
As discussed earlier, one of our research goals was the novel
exploration of ubiquitous environments with an expanded
tracking space and multiple newer sensors. This goal
requires sensor fusion techniques that are seamless in nature,
as well as modular. The SoD-Toolkit, primarily relies on the
Kinect (version 1 or 2) as the means for providing room-

Figure 4. Sensor Fusion using multiple Kinect sensors. (a) 2 uncalibrated Kinect sensors (overlapping) showing skeletons tracked
in the environment. (b) Interface for calibration. (c) Properly calibrated environment with overlapping Kinect areas.

a

c

b

176

based tracking, as opposed to more expensive and harder to
setup motion-tracking systems [25]. Given the limitations of
a single Kinect tracking system, we use a method of image
comparison between multiple Kinect sensors to expand
tracking area and improve accuracy.

Generally, the sensor fusion method for multiple Kinect
sensors in SoD-Toolkit works as follows: (1) A common
object (e.g. a water bottle) is placed in the common viewing
and tracking area of two Kinects, (2) Two points from each
sensor's view are selected (based on the common object) in
the Calibration interface in the Visualization tool and (3) One
Kinect sensor's vector (the user selected reference sensor) is
translated to another Kinect sensor's vector through a custom
algorithm and saved. Figure 4 illustrates this specific process
from the perspective of the Visualizer tool. The translation
of the Kinect data is also reflected in the skeletal tracking, as
the Location service compares skeleton data with the list of
people being tracked in the environment. The location
service then ensures that a person being tracked by multiple
Kinect sensors is presented only once by comparing its
position with the relative position of tracked users. This
process is for two sensors at a time, and for larger spaces with
multiple Kinect sensors, the process is repeated for each
additional Kinect sensor and the reference sensor.

Information from Kinect sensors and individual device
orientations is also fused by the Location service to provide
position and orientation of a device. This type of fusion,
which we call a paired state – where a device and user are
paired – then allows for multi-device interactions such as
“flicking” and “pouring” [32] that require more accurate
spatial-awareness. We also allow for sensor data from other
sensors such as the iBeacon and Leap motion to augment
existing information that can be inconsistently provided by
Kinect sensors in certain situations (e.g. a user is too far away
from the sensor for fine grained finger tracking or is out of
consistent tracking range to determine distance). In code, a
researcher or developer can simply choose which sensor to
use, either based on confidence levels or preference.
REAL-WORLD CASE STUDIES
To demonstrate the functionality and test the feasibility and
applicability of the toolkit for real-world deployments of
spatially-aware ubiquitous environments, we present two
real-world industry case studies. The implementations we
discuss were built in parallel with the toolkit itself, and
shaped many of the decisions that led to the features and
design of the toolkit. Both of the systems described in this
section were built with different teams of developers and
industry partners with whom we collaborated closely with.
For each case study, we briefly describe the system and
reflect on lessons learned from the domain that influenced
the design of the toolkit.
Oil and Gas Exploration
The very first ubiquitous environment built in parallel with
the SoD-Toolkit was [34]. We worked closely with
SkyHunter Exploration Ltd. who are located in Canada, and

specialize in oil and gas exploration, and have proprietary
technology that collects a variety of geo-spatial data. The
data they collect is multidisciplinary, and ultimately
increases the chances of discovering oil and gas
significantly. Prior to building the ubiquitous environment,
much of their collaboration with the stakeholders in the
exploration and decision-making processes (i.e.
geophysicists, geologists) was paper-based and ineffective
due to large volumes of geo-spatial data, as well as the
reliance on single user non-collaborative tools. Upon
building the environment with spatial-awareness and various
multi-device interactions, we received positive feedback in
areas such as collaboration and interaction with geospatial
data [34].
Emergency Response
Following the first industry case study for the toolkit and the
adjustments made based on developer and industry feedback,
we then continued to the emergency response domain. We
collaborated with C4i Consultants, also located in Canada,
who specialize in training software for military operations
and emergency response. They provide a software tool ePlan,
which is designed to simulate large scale emergencies, and
train civic operators on how to respond with different types
and scales of emergencies. Given the collaborative nature of
emergency response planning environments and the number
of individuals and devices that can be involved in the
decision-making process, this was an ideal candidate for
building a ubiquitous environment. We built a ubiquitous
emergency response environment that built upon ePlan to
drive simulations [4]. It allowed for larger groups of different
stakeholders (e.g. fire, police, hazmat) to collaborate and
communicate within a spatially-aware environment that
contained a large wall display, tablets and a digital tabletop.
Spatial interactions such as “flick” and “pour” allowed
transfer of vital emergency information amongst the
different stakeholders and their devices.
Lessons Learned
As we began to develop the toolkit in collaboration with our
first industry partner, we relied exclusively on the Microsoft
Kinect sensors for spatial-awareness and tracking in the
environment. However, when developers deployed the
system built with the toolkit and received feedback from
system users about the general uncomfortableness of
multiple highly visible tracking sensors in an environment
(particularly in an office or meeting context), this facilitated
our change in the toolkit from single sensor rigidity to multi-
sensor flexibility. We also provided a set of common gestures
from multi-device interactions (flick, pour, bump from [32])
for the developers to use for information transfer tasks, but
our feedback from them indicated the need for accessing raw
information to customize/ explore more detailed interactions,
particularly as the skill on the development team was varied.

After the subsequent changes made in the toolkit based on
feedback from developers in the first industry project, we
then worked closely with a second industry partner in a

177

different domain, emergency response. A primary challenge
for developers of ubiquitous environments in this domain, is
information is distributed across the room, usually in highly
concentrated regions around specific personnel. At the time,
the toolkit wasn’t optimized enough to handle regions of
coarse and fine grained tracking. This lead to the change of
allowing for sensor transition, depending on the sensors
available in the environment. The developers and industry
partner also expressed interest in applying of proxemic
interactions to region specific data, which led to the
development of data points in the toolkit. Lastly, the
developers and industry collaborators faced challenges in
developing their ubiquitous environment due to limited
access to highly confidential and private emergency response
environments. To help facilitate developers, we found it
important to enable them to develop unencumbered by room
access, devices or sensors. This created features in the toolkit
for easy prototyping, allowing developers to mock
ubiquitous environments and multi-device interactions.
DISCUSSION
Implementing and designing larger ubiquitous
environments, applications and multi-device interaction
techniques is an extremely complicated task. We introduced
the SoD-Toolkit that provides researchers and developers
with a number of tools that support the design, prototyping
and implementation of deployable multi-device, multi-
sensor ubiquitous environments, applications and
interactions. We allow researchers and developers to choose
their own sensors and devices to build ubiquitous
configurations (regardless of owning hardware) and use the
tools provided to explore their ubiquitous designs. In this
section, we compare SoD-Toolkit to other approaches using
Olsen’s thematic framework approach [6], similar to [13].
Problem not previously solved
A number of toolkits such as XDStudio [27], Conductor [9]
and Panelrama [43] reduced the barrier of entry for
researchers and developers in creating and exploring
ubiquitous environments, applications and interactions. SoD-
Toolkit builds upon many of the concepts in these toolkits,
and further extends the work with greater support for a
diverse set of devices and sensor platforms, multi-sensor
mappings, and the ability to explore novel multi-device
interaction combinations. We also focused on providing a
toolkit that is easily configurable and deployable in real-
world contexts, a common criticism of toolkits for ubiquitous
environments [28, 29]. The toolkit also draws upon previous
work in proxemic interactions and applications (such as
Proximity Toolkit [23] and Grouptogether [24]),
generalizing ubiquitous approaches, and spatial awareness,
allowing for the exploration and development of different
facets of research in ubiquitous environments, such as multi-
device interaction techniques and sensor fusion approaches.

Another limitation of several existing toolkits lies in the
physical reliance on sensor and device hardware for
prototyping and developing ubiquitous environments and

multi-device interactions. We allow researchers and
developers to explore multi-device, multi-sensor ubiquitous
environments without the need for all hardware or sensor
components, which becomes increasingly important and
relevant as the underlying technology moves rapidly both in
terms of cost and capability. Reducing this limitation allows
for an expansion of research into ubiquitous environments.
Generality
To demonstrate the expressivity of the building block
components of the SoD toolkit [6], we discussed two industry
case-studies that included interaction techniques and
scenarios considered state of the art [4, 34]. We also
highlighted the versatility and generality with these industry
case studies, but through them recognized the limitations and
strengths of the toolkit. A number of limitations of the
toolkit, particularly in its focus for providing larger
ubiquitous environments stem from the usage of the Kinect
hardware. The Kinect does not provide the same level of
extremely accurate tracking by large scale systems (e.g.
Vicon) even with multiple Kinect sensors. This is further
enhanced when coarser grained sensors (e.g. iBeacons) are
used entirely. However, based on our collaborations with
industry partners, we believe that for more real-world
deployments of ubiquitous environments, this is a necessary
trade-off. This provides an advantage, as hardware and
sensor limitations are nullified by simply using existing
hardware and sensor setups to develop novel and more
futuristic multi-sensor, multi-device ubiquitous
environments, applications and interactions. Furthermore,
the toolkit can easily be extended to support newer sensor
and hardware platforms as they emerge.
Reducing Solution Viscosity
Compared to other methods to develop real-world
deployable multi-sensor, multi-device ubiquitous
environments, applications and interactions, the SoD-Toolkit
dramatically lowers the development viscosity [34] by
providing a flexible architecture that allows for “expressive
leverage” [13]. The design of the architecture also allows for
the potential to transform several existing multi-device
toolkits (e.g. XDStudio [27]) into multi-sensor and spatially-
aware toolkits. Furthermore, as the toolkit abstracted and
simplified many challenges in creating complex ubiquitous
environments (as discussed previously), novice researchers
and developers can focus on creating novel systems and
interactions with minimal overhead, while those with more
experience can freely modify different aspects of the toolkit,
such as sensor-fusion approaches and sensor support.
Empowering new design participants
The lack of real-world deployable examples of larger multi-
device ubiquitous environments (prototypes or otherwise)
despite widely available sensors and devices, indicates a
need for adequate toolkit support for researchers and
developers. In the research literature, a number of elicitation
studies have been performed to study interactions in
ubiquitous environments, but very little follow-up work is
typically performed, particularly from an implementation

178

perspective. Additionally, multi-device explorations with
newer forms of devices in ubiquitous environments (e.g.
wearables) is still very minimal in the research literature,
particularly in multi-sensor spatially-aware ubiquitous
environments [13]. SoD-Toolkit focuses on lowering the
threshold for non-expert programmers, researchers and
interaction designers and empower them to explore with new
and existing sensor and device technologies for real-world
deployments and contexts. To date, we have not performed
an in-depth study with developers for the toolkit, but we have
worked closely with developers and industry from the onset
of implementation and design of the toolkit. This remains as
future work, but we believe the toolkit is an important step
in exploring novel larger scale ubiquitous environments with
multiple sensors and multiple devices, as well as necessary
for exploring novel multi-sensor, multi-device interactions.
Power in combination
Similar to prior toolkits, SoD-Toolkit combines hardware and
sensor management, sensor fusion techniques, networking,
disributed interfaces and prototyping into a single toolkit. As
mentioned earlier, the architecture design allows for these
components to be extremely decoupled, allowing for the
addition or subtraction of different approaches. Additionally,
as the SoD-Toolkit supports multiple platforms, it already
integrates with several major UI frameworks (e.g. Objective
C and Xcode), meaning developers can both prototype and
build upon commercially available hardware.
Can it scale up?
In building multi-sensor, multi-device spatially-aware
ubiquitous environments, particularly ones designed for
deployment, the scalability of the sensors that provide spatial
awareness for multi-device interactions becomes an issue.
For toolkits such as Panelrama [43] and Conductr [9], the
solutions are scalable as they do not rely on sensors and use
scalable web-based technologies (e.g. HTML5).
Alternatively, toolkits such as Proximity Toolkit [23] and
XDKinect [28], are either scalable but face challenges for
real-world deployment due to complex setups or are limited
in functionality due to limited sensor support. Undoubtedly,
balancing spatial awareness and scalable solutions is
difficult, especially when not using motion-tracking systems
that aren’t feasible for deployment [28, 29]. The design of
SoD-Toolkit supports multiple low-cost off the shelf sensors
that can be used in concert, for a larger spatially-aware
ubiquitous environment. Additionally, as SoD-Toolkit allows
researchers to choose their sensors and devices, researchers
and developers can choose their granularity of spatial-
awareness in a ubiquitous environment.
CONCLUSION
The SoD-Toolkit offers a rich set of tools and software
libraries for researchers and developers to prototype and
develop deployable multi-device, multi-sensor interactions,
applications and environments. We allow researchers and
developers to easily “plug-and-play” popular off-the-shelf
hardware (sensors and devices) to build their ubiquitous
environments, while removing network and device

management, sensor fusion and complex algorithmic
challenges. The toolkit abstracts these challenges into an
easily accessible API and events, integrating with several
existing UI development software tools. As a result, the
toolkit reduces complexity and lowers the barrier of entry for
researchers and developers to design larger and more
intricate multi-device ubiquitous environments. The toolkit
also allows for future explorations of novel multi-device
interaction techniques, multi-sensor designs and other
unique ubiquitous environments that can be deployed in new
and unexplored contexts and domains. Future work for the
SoD-Toolkit includes integrating powerful device-centric
sensors like the Google Tango, and gesture detection for
different types of interactions in ubiquitous environments.
ACKNOWLEDGEMENTS
We would like to thank our many colleagues from the Agile
Surface Engineering (ASE) Lab and our industry partners for
their useful discussions and advice as we developed the
toolkit. We also thank the anonymous reviewers for their
careful and valuable comments and suggestions. This
research was supported in by the NSERC SurfNet Research
Network, NSERC and Alberta Innovates Technology
Futures (AITF).
REFERENCES
1. Ballendat, T., Marquardt, N. and Greenberg, S. Proxemic

interaction: designing for a proximity and orientation-aware
environment. In Proc of ITS 2010, 121-130.

2. Brumitt, B., Meyers, B., Krumm, J., Kern, A. and Shafer, S.
A. EasyLiving: Technologies for Intelligent Environments. In
Proc of UbiComp 2000, 12-29.

3. Chen, X. A., Grossman, T., Wigdor, D. J. and Fitzmaurice,
G. Duet: exploring joint interactions on a smart phone and a
smart watch. In Proc of CHI 2014, 159-168.

4. Chi, P. and Li, Y. Weave: Scripting Cross-Device Wearable
Interaction. In Proc of CHI 2015, 3923-3932.

5. Chokshi, A., Seyed, T., Rodrigues, F. M. and Maurer, F.
ePlan Multi-Surface: A Multi-Surface Environment for
Emergency Response Planning Exercises. In Proc of ITS
2014, 219-228.

6. Dan R. Olsen, J. Evaluating user interface systems research.
In Proc of UIST 2007, 251-258.

7. Edward, T. Hall, The Hidden Dimension. Garden City, NY:
Doubleday, City, 1966.

8. Greenberg, S., Marquardt, N., Ballendat, T., Diaz-Marino, R.
and Wang, M. Proxemic interactions: the new ubicomp?
interactions, 18, 1 (2011), 42-50.

9. Hamilton, P. and Wigdor, D. J. Conductor: enabling and
understanding cross-device interaction. In Proc of CHI 2014,
2773-2782.

10. Hartmann, B., Beaudouin-Lafon, M., and Mackay, W.
HydraScope: creating multi-surface meta-applications
through view synchronization and input multiplexing. In
Proc of PerDis 2013, 23-28.

11. Hinckley, K. Synchronous gestures for multiple persons and
computers. In Proc of UIST 2003, 149-158.

179

12. Hinckley, K., Ramos, G., Guimbretiere, F., Baudisch, P. and
Smith, M. Stitching: pen gestures that span multiple displays.
In Proc of AVI 2004, 23-31.

13. Houben, S. and Marquardt, N. WatchConnect: A Toolkit for
Prototyping Smartwatch-Centric Cross-Device Applications.
In Proc of CHI 2015, 1247-1256.

14. Huang, D.-Y., Lin, C.-P., Hung, Y.-P., Chang, T.-W., Yu, N.-
H., Tsai, M.-L. and Chen, M. Y. MagMobile: enhancing
social interactions with rapid view-stitching games of mobile
devices. In Proc of MAM 2012, 1-4.

15. Jakobsen, M., Haile, Y., Knudsen, S. and Hornbæk, K.
Information Visualization and Proxemics: Design
Opportunities and Empirical Findings. IEEE Transactions on
Visualization and Computer Graphics, 19, 12 (2013), 2386-
2395.

16. König, A., Rädle, R. and Reiterer, H. Squidy: a zoomable
design environment for natural user interfaces. In Proc of
CHI’EA 2009, 4561-4566.

17. Kortuem, G., Kray, C. and Gellersen, H. Sensing and
visualizing spatial relations of mobile devices. In Proc UIST
2005, 93-102.

18. Kray, C., Rohs, M., Hook, J. and Kratz, S. Group
coordination and negotiation through spatial proximity
regions around mobile devices on augmented tabletops. In
Proc. Horizontal Interactive Human Computer Systems,
2008. TABLETOP 2008. 3rd IEEE International Workshop
on, IEEE (2008), 1-8.

19. Laibowitz, M. and Paradiso, J.A. The UbER-Badge, a
versatile platform at the juncture between wearable and social
computing. In: Fersha A, Hortner H, Kostis G (eds)
Advances in Pervasive Computing. Oesterreichische
Computer Gesellschaft, Wien, pp 363-368.

20. Lucero, A., Holopainen, J. and Jokela, T. Pass-them-around:
collaborative use of mobile phones for photo sharing. In Proc
of CHI 2011, 1787-1796.

21. Lucero, A., Keränen, J. and Korhonen, H. Collaborative use
of mobile phones for brainstorming. In Proc of MobileHCI
2010, 337-340.

22. Marquardt, N., Ballendat, T., Boring, S., Greenberg, S. and
Hinckley, K. Gradual engagement: facilitating information
exchange between digital devices as a function of proximity.
In Proc of ITS 2012, 31-40.

23. Marquardt, N., Diaz-Marino, R., Boring, S. and Greenberg,
S. The proximity toolkit: prototyping proxemic interactions
in ubiquitous computing ecologies. In Proc of UIST 2011,
315-326.

24. Marquardt, N. and Greenberg, S. Informing the Design of
Proxemic Interactions. IEEE Pervasive Computing, 11, 2
(2012), 14-23.

25. Marquardt, N., Hinckley, K. and Greenberg, S. Cross-device
interaction via micro-mobility and f-formations. In Proc. of
UIST 2012, 13-22.

26. Mayer, S. and Sörös, G. User Interface Beaming -- Seamless
Interaction with Smart Things Using Personal Wearable
Computers. In Proc. Proceedings of the 2014 11th
International Conference on Wearable and Implantable Body
Sensor Networks Workshops, IEEE Computer Society (2014),
46-49.

27. Nebeling, M., Mintsi, T., Husmann, M. and Norrie, M.
Interactive development of cross-device user interfaces. In
Proc of CHI 2014, 2793-2802.

28. Nebeling, M., Teunissen, E., Husmann, M. and Norrie, M. C.
XDKinect: development framework for cross-device
interaction using kinect. In Proc of EICS 2014, 65-74.

29. Rädle, R., Jetter, H.-C., Marquardt, N., Reiterer, H. and
Rogers, Y. HuddleLamp: Spatially-Aware Mobile Displays
for Ad-hoc Around-the-Table Collaboration. In Proc
Proceedings of ITS 2014, 45-54.

30. Rekimoto, J. Pick-and-drop: a direct manipulation technique
for multiple computer environments. In Proc of UIST 1997,
31-39.

31. Schmidt, D., Seifert, J., Rukzio, E. and Gellersen, H. A cross-
device interaction style for mobiles and surfaces. In Proc of
DIS 2012, 318-327.

32. Seyed, T., Burns, C., Sousa, M. C., Maurer, F. and Tang, A.
Eliciting usable gestures for multi-display environments. In
Proc of ITS 2012, 41-50.

33. Schreiner, M., Rädle, R., Hans-Christian, J. and Reiterer, H.
A Framework for Cross-Device Web Applications. In Proc of
CHI’EA 2015, 2163-2168.

34. Seyed, T., Sousa, M. C., Maurer, F. and Tang, A. SkyHunter:
a multi-surface environment for supporting oil and gas
exploration. In Proc of ITS 2013, 15-22.

35. Snibbe, S. S. and Raffle, H. S. Social immersive media:
pursuing best practices for multi-user interactive
camera/projector exhibits. In Proc of CHI 2009, 1447-1456.

36. Streitz, N., Prante, T., M, C., ller-Tomfelde, A., Tandler, P.
and Magerkurth, C. Roomware: the second generation. In
Proc of CHI EA 2002, 506-507.

37. Streitz, N. A., Holmer, T., Konomi, S. i., M, C., ller-
Tomfelde, Reischl, W., Rexroth, P., Seitz, P. and Steinmetz,
R. i-LAND: an interactive landscape for creativity and
innovation. In Proc of CHI 1999, 120-127.

38. Vogel, D. and Balakrishnan, R. Interactive public ambient
displays: transitioning from implicit to explicit, public to
personal, interaction with multiple users. In Proc of UIST
2004, 137-146.

39. Wagner, J., Nancel, M., Gustafson, G., Huot, S. and Mackay,
W. Body-centric design space for multi-surface interaction.
In Proc of CHI 2013, 1299-1308.

40. Want, R., Hopper, A., Falc, V., #227 and Gibbons, J. The
active badge location system. ACM Trans. Inf. Syst., 10, 1
(1992), 91-102.

41. Weiser, M. The computer for the 21st century. SIGMOBILE
Mob. Comput. Commun. Rev., 3, 3 (1999), 3-11.

42. Wilson, A. D. and Benko, H. Combining multiple depth
cameras and projectors for interactions on, above and
between surfaces. In Proc of UIST 2010, 273-282.

43. Yang, J. and Wigdor, D. Panelrama: enabling easy
specification of cross-device web applications. In Proc of
CHI 2014, 2783-2792.

44. Zadow, U., Büschel, W., Langner, R. and Dachselt, R. SleeD:
Using a Sleeve Display to Interact with Touch-sensitive
Display Walls. In Proc of ITS 2014, 129-138.

180

