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Figure 1. The SoD-Toolkit consists of (a) numerous devices and sensors that are supported by (b) software tools and components 

providing information that facilitates (c) spatial interactions between devices and the environment. 

ABSTRACT 
As ubiquitous environments become increasingly 
commonplace with newer sensors and forms of computing 
devices (e.g. wearables, digital tabletops), researchers have 
continued to design and implement novel interaction 
possibilities. However, as the number of sensors and devices 
continues to rise, researchers still face numerous 
instrumentation, implementation and cost barriers before 
being able to take advantage of the additional capabilities. In 
this paper, we present the SoD-Toolkit – a toolkit that 
facilitates the exploration and development of multi-device 
interactions, applications and ubiquitous environments by 
using combinations of low-cost sensors to provide spatial-
awareness. The toolkit offers three main features. (1) A “plug 
and play” architecture for seamless multi-sensor integration, 
allowing for novel explorations and ad-hoc setups of 
ubiquitous environments. (2) Client libraries that integrate 
natively with several major device and UI platforms. (3) 

Unique tools that allow designers to prototype interactions 
and ubiquitous environments without a need for people, 
sensors, rooms or devices. We demonstrate and reflect on 
real-world case-studies from industry-based collaborations 
that influenced the design of our toolkit, as well as discuss 
advantages and limitations of our toolkit. 
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ACM Classification Keywords 
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INTRODUCTION 
The consumer space of computing technologies is 
experiencing a dramatic explosion of different size and form 
factors for devices (e.g. wearables, multi-touch wall 
displays). The capabilities of these devices can be expanded 
significantly when used collectively with other devices and 
sensors, effectively creating multi-device ubiquitous 
environments. Ubiquitous environments provide people with 
access to their information across many of their devices, with 
some devices being spatially aware of other devices in the 
environment. Spatial awareness in ubiquitous environments 
is directly linked to the sensors (either dedicated or device-
based) and further magnifies existing challenges as to how 
information and tasks can be performed effectively across 
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different types of devices, within varying degrees of spatial 
awareness [32]. 

Research in ubiquitous environments primarily focuses on 
novel interaction forms between people and a set of devices 
[41] (e.g. digital tabletops, mobile devices, smart watches), 
with proxemics being a common method of conceptualizing 
the interaction space [1, 8]. As different form factors for 
devices becomes commonplace and the capabilities of 
sensors increase, novel forms of explorations between 
different devices (e.g. a Google Glass and a Smart Watch) is 
still fairly limited in the context of spatially-aware ubiquitous 
environments. Furthermore, exploration into real-world 
scenarios also faces limitations, much of which arises from 
the difficulty in building multi-device, spatially-aware 
environments, as many existing development kits are limited 
in support for different multi-sensor configurations, multi- 
device platforms and cross-connectivity and typically require 
complex software and hardware setups [13]. 

To bridge the gap and allow for richer explorations into 
spatially-aware ubiquitous environments, we introduce the 
Society of Devices (SoD) Toolkit (or SoD-Toolkit), a toolkit 
that facilitates exploring and developing multi-device 
applications and interactions in spatially-aware ubiquitous 
environments (Figure 1). Overall, our primary research goal 
was to allow for novel explorations of different types of 
multi-device, spatially-aware (through multi-sensor fusion) 
ubiquitous environments that can be augmented with a 
multitude of newer sensors and device platforms. To address 
this goal, our toolkit abstracts sensor information from a 
multitude of sensors into a “plug and play” architecture, 
allowing researchers and developers to seamlessly fuse 
sensor information and utilize commercially available off-
the-shelf tracking technologies to provide spatial awareness 
in ubiquitous environments. Researchers and developers can 
also create additional modules for future sensors through the 
modular architecture of the toolkit. The toolkit also provides 
a number of client libraries that are built upon existing 
operating systems and platforms which include iOS, 
Android, Windows, as well as web-based technologies such 
as HTML5, Node.js and Javascript. This allows for a wide 
range of skill sets and experience, letting researchers and 
developers implement and design interactions and ubiquitous 
environments in languages they are comfortable with, 
reducing many common platform, language, technology and 
device barriers [28]. In addition, the toolkit offers tools for 
researchers and developers to visualize and prototype 
interactions within varying levels of spatially-aware 
ubiquitous environments (due to limited hardware 
availability) or without the need of specialized hardware 
entirely. This reduces a significant hardware and cost barrier 
for researchers and developers, and can assist in more 
widespread research and application development for 
ubiquitous environments in both the research and consumer 
space.  
 

The remainder of this paper, is organized as follows. We first 
review related work and then introduce the design of the 
SoD-Toolkit, including its key features, architecture and 
components.  

Next, we describe two real-world domain-specific case 
studies that demonstrate the flexibility of the toolkit, how 
they influenced the design rationale of the toolkit and lessons 
we learned. This is followed by a discussion and reflection 
on the design and features of the toolkit compared to other 
approaches. Finally, we conclude this paper describing 
limitations and future work. 
RELATED WORK 
SoD-Toolkit is inspired by Weiser’s vision of ubiquitous 
computing [41] and built upon prior work in three areas of 
research: (1) Proxemics and Ambient Interactions, (2) Multi-
Surface Interactions and (3) Application Programming 
Interfaces (APIs) and Toolkit designs. 
Proxemics and Ambient Interactions 
The research space of proxemic interactions is extremely rich 
and well explored. Greenberg et al. conceptualized 
proxemics in the context of ubiquitous environments with a 
number of investigations that focused on spatial relationships 
between users and objects, specifically applying five 
proxemic dimensions: orientation, distance, motion, identity 
and location [8]. The intention of much of the research in this 
space is to “leverage people’s natural understanding of their 
proxemic relationships to manage the entities that surround 
them” [23]. Applying these proxemic theories to sensors in 
ubiquitous environments was further explored by Ballendat 
et al, who used sensors to detect people and their devices, 
and better understand different types of interactions (i.e. 
implicit and explicit) [1]. Follow-up work by Marquardt et 
al. examined the relationships between people in closer 
spaces through F-formations and micro-mobility and 
sociological constructs [25].  

Marquardt and Greenberg also identified major challenges 
for proxemics, which included providing meaningful 
feedback, managing privacy and security and establishing 
connections between different types of devices [22]. 
Establishing connections with different types of devices was 
the focus of early work in proxemics by Vogel and 
Balakrishnan, who explored proxemics in relation to public 
ambient displays [38]. They defined four discrete areas in 
front of devices, similar to Edward Hall’s proxemic zones 
surrounding a person [7]. In more recent years, research 
focused on devices such as whiteboards [15, 31] and other 
forms of displays [35]. 

While a majority of proxemics research has been heavily 
device-centric in relatively small or enclosed spaces, 
proxemics in larger more ambient spaces (and not around 
smaller displays) has been less researched. Active Badge by 
Want et al., is an early example of exploring larger scale 
proxemics [40]. Their system uses a beacon sensor to track 
position of users in a work environment. UbER Badge by 

172



Laibowitz et al is another example, whose system uses 
proxemic badges [19]. The badges are used to facilitate 
social interaction in various large meetings. In the context of 
a ubiquitous home, the EasyLiving project explored multi-
room proxemics by combining a number of technologies to 
track people and their devices on a larger scale [2]. Research 
into proxemic interactions in larger and more ubiquitous 
spaces is directly tied to different types of tracking 
technologies, a large research area within ubiquitous 
environments itself. SoD-Toolkit builds upon many of the 
concepts in proxemics and ambient spaces with a goal of 
providing lightweight tools and libraries for developing and 
exploring interactions and applications in larger scale 
ubiquitous environments and domains, without researchers 
and developers being restricted in room size or choice of 
sensors. 
Multi-Device Interactions 
Multi-device interactions with a number of different device 
configurations is a rapidly growing research area, 
particularly with newer form factors of devices increasing in 
the consumer market (e.g. wearables). A major task in multi-
device interactions involves the movement of information or 
content from one device to another [32]. Much of the early 
work in multi-device interactions is based upon Rekimoto’s 
Pick and Drop, where pen input is synchronized across 
multiple computers, allowing a user direction manipulation 
of content between screens [30]. Hinckley explored the 
notion of bumping tablets and stitching tablets together (via 
pen stroke across displays) as multi-device interactions for 
transferring content [11, 2]. Lucero et al followed a similar 
approach, but instead used a pinching gesture across multiple 
mobile devices [21]. In these types of multi-device 
interactions, input is typically synchronized to facilitate 
smooth interaction and information transfer [3].  

Multi-device interactions can also be impacted by spatial 
awareness and proxemic relationships [3]. Numerous 
sensors are employed to provide positioning and tracking of 
devices (and users) to take advantage of spatial relationships. 
Kortuem et al. used this approach when creating novel spatial 
widgets for user interfaces [17]. Kray et al., used a digital 
tabletop as a center of mediation for proxemic relationships 
between mobile devices [18]. More general work in these 
types of interactions were explored by Marquardt et al with 
the gradual engagement pattern, that maps device-to-device 
proximity as a function of different levels of information 
exchange [22]. LightSpace by Wilson and Benko [42], uses 
spatial awareness for interactions between and on physical 
surfaces. 

Dividing information and interfaces across multiple devices 
results in interactions that are distributed [3]. The iLand 
system by Streitz et al [37] is an early example of interactions 
distributed in a ubiquitous environment. Roomware is 
another example that inter-connects smart artifacts in a room, 
to augment both individual and collaborative tasks [36]. 
More recently, interactions between newer forms of devices 

such as wearables has begun to appear in the research 
literature. Chen et al., explored interaction techniques and 
gestures for distributed interactions between a watch and 
smartphone [3]. In a similar fashion, Mayer et al. [26] 
explored head-mounted display to interact with objects 
within view of a user. Overall however, distributed 
interaction techniques for wearables and newer forms of 
devices is still extremely underexplored [3, 13, 39, 44]. 

Much of this work indicates the potential interaction 
techniques for ubiquitous environments, however a 
significant amount of implementation work is repeated for 
interactions that are synchronized, spatially-aware or 
distributed. SoD-Toolkit easily allows for the exploration of 
these types of interactions (or combinations thereof) and can 
facilitate researchers in exploring unconventional and yet-to-
be explored multi-device spatially-aware interactions (e.g. 
between a head-mounted display and a smart watch). 
Application Programming Interfaces and Toolkits 
A significant amount of recent research has explored creating 
multi-device toolkits, primarily designed to overcome 
different aspects of the engineering challenges that come 
with building ubiquitous environments. Toolkits, such as 
Conductor [9] and Panelrama [43] and others [4, 16, 33], 
focus specifically on multi-device application development 
through web-based interfaces. XDStudio also supports cross-
device application development, through the use of a GUI 
builder [27].  

Figure 2. An overview of the architecture of the SoD-Toolkit 
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The Proximity Toolkit is the canonical example of a toolkit 
focused on larger ubiquitous spaces [23]. The toolkit gathers 
data from various tracking sensors to allow for sensor fusion, 
and provides an easily accessible API. It also allows for 
interactions to be observed via a visual tool. A major 
challenge with the toolkit however, is its reliance on high-
end tracking systems [27] that are ideal for prototyping but 
not feasible in real-world deployments [28] and its limited 
support for additional sensors. This inspired further work, 
such as XDKinect [28] which uses a single Kinect sensor to 
mediate interaction between different devices and also 
allows proxemic interaction and multi-modal input. In 
toolkits such as these, enabling multi-device interactions in 
ubiquitous environment requires knowledge about presence 
and position of devices, typically provided by a variety of 
sensors. Numerous approaches have been taken in the 
research literature, such as magnet based tracking [14], radio 
tracking [21] and sensor fusion approaches [23]. Much of the 
work in prototyping ubiquitous environments also faces 
issues of cost (for sensors and devices) and room size, 
making it difficult for researchers to properly explore novel 
types of ubiquitous environments and multi-device 
interactions.  

Implementing ubiquitous environments that are deployable 
in real-world environments still requires substantial 
engineering efforts for researchers and developers. It is still 
possible to build applications for different devices, with 
different sensors in ubiquitous environments, but the effort 
required prevents richer explorations [29]. In contrast, SoD-
Toolkit provides support for exploring multi-sensor, multi-
device ubiquitous environments by providing (1) a “plug and 
play” architecture multi-sensor fusion, (2) native client 
libraries for major device, sensor and UI platforms and (3) 
tools that allow rapid prototyping without the need for 
people, sensors, rooms or devices.  
SOD-TOOLKIT 
In this section, we provide an overview of the SoD-Toolkit 
architectural components, its visualization and prototyping 
tool, as well as its multi-sensor fusion approach to create 
larger ubiquitous environments. To facilitate real-world 
deployments and novel explorations of ubiquitous 
environments, we primarily focused on off-the-shelf sensor 
hardware and common devices, as well as free and open 
source software. Our source code is also freely available to 
download as open source1. 
Architecture 
The software architecture of SoD-Toolkit is composed of 
several components (Figure 2) but primarily, we discuss: (1) 
client libraries, (2) the locator service, and (3) the central 
server and communications module. 

                                                           
1 SoD Toolkit - http://sodtoolkit.com/ 

Client SDK Libraries 
The client SDK libraries have two primary functions: (1) 
they provide necessary information for spatial awareness in 
the environment, depending on the sensor or device and (2) 
provide a platform to be built upon for native application 
development. Within each client library, a sensor module 
captures and sends data to the locator service frequently 
(discussed in the next section) and the data captured varies, 
depending on device or sensor type. The libraries support: 

1. Various form factors of devices such as digital tabletops, 
wall displays, smart watches, head mounted displays and 
mobile devices (regardless of implementation platform). If 
a device has built in sensors (e.g. accelerometers, 
gyroscopes), this information is sent over the network to 
the locator service, which is discussed in the next section. 
Due to the modular nature of the architecture, spatial 
information from a device is easily fused with other 
supported sensors in the environment. For example, we 
allow for the position and orientation of a device to be 
determined by fusing skeletal information of a user (from 
a Microsoft Kinect) with orientation of a device (from 
gyroscopes and accelerometers). For devices that are 
stationary (e.g. a wall display), we allow researchers and 
developers to set the physical location in space, through 
the visualization tools we provide, as we discuss later. 

2. JS web client that is both platform and browser agnostic, 
deriving information from a device if it has sensors 
available. This client is similar to the platform specific 
device clients, however, this allows for support of web-
based multi-sensor, multi-device ubiquitous 
environments, which is not common in many toolkits. 

3. The Microsoft Kinect provides skeletal, position, identity 
and gestural information through its available skeletal 
stream. The Kinect client library supports a single 
Microsoft Kinect (version 1 or 2) and sends information 
over the network to the locator service at a rate of 30 
skeleton frames per second. A single Kinect sensor has a 
tracking range from 1.2 to 4.5 meters, which creates 
difficulties when trying to create larger ubiquitous 
environments. We address this by allowing multiple 
Kinects to track users and use sensor fusion to expand the 
tracking area, create novel tracking areas, as well as 
improve tracking accuracy. We discuss this sensor fusion 
in the Sensor Fusion approach section.  Additionally, our 
Kinect client currently supports the “grab” and “release” 
gestures. 

4. The Leap Motion provides detailed finger tracking of a 
user. Overall the sensor provides a more fine grained level 
of tracking that typically needs to be paired with a sensor 
that covers a larger area (e.g. Microsoft Kinect) to provide 
meaningful interactions. For example, if a user is further 
away from a Kinect and close to a wall display that isn’t 
touch enabled, but is connected to a Leap motion, the 
locator service interprets the position of the user and 
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prioritizes sensor information from the Leap motion over 
potentially inconsistent Kinect skeletal data, particularly 
for skeleton and joint data. 

5. Apple’s iBeacon which provide coarse grained positional 
information. The sensor provides position information of 
a device (either Android or iOS) or person (a person must 
have an iBeacon tag) in the form of close, near or far. 
While the sensor doesn’t provide as accurate tracking as a 
Kinect sensor, it can facilitate a larger ubiquitous space 
and server as a mediator, transitioning between high and 
low spatially-aware regions. 

All clients for sensors and devices support native 
development platforms which include Windows (C#), iOS 
(Objective-C and Swift), Android (Java) and HTML5/JS, as 
well as support for popular IDEs (Microsoft’s Visual Studio, 
Android Studio and Apple’s Xcode), significantly reducing 
start-up effort for researchers and developers. For other 
programming languages, environments, developers are able 
to write wrappers over the libraries and APIs we provide. We 
also provide a set of example applications using different 
sensors and devices to illustrate code required to implement 
novel spatially-aware multi-device interactions (e.g. “flick” 
to device) or multi-sensor ubiquitous environment.  
Locator Service 
The Locator service is the hub that amalgamates spatial 
information from different sensors and devices, allowing the 
SoD-Toolkit to build multi-sensor spatially-aware ubiquitous 
environments. Information that is tracked includes different 
types of entities, such as sensors, devices (as well as their 
orientation) as well as users in the room. The locator service 

processes raw positional data from device and sensor clients 
that are distributed over the network, and transforms the data 
from a device-specific coordinate space into a locator service 
coordinate space, while also building higher level 
information about the state of the environment and the 
relationships between entities. Additionally, all entities that 
are tracked and processed by the locator service are in 3D.  

As the locator service maintains position and distance 
between all entities, proxemic functions are readily available 
for researchers and developers to build upon. These 
functions include querying and filtering entities based on 
distance or within a certain distance range, and whether an 
entity is in the field of view of another entity, similar to [23]. 
We also allow researchers and developers to dynamically 
change proxemic properties of entities (e.g. location and 
orientation) through our visualization tool that we discuss in 
the next section. 

The locator service uses an event-driven design, where 
clients subscribe to events that occur in the locator service, 
such as the proxemics previously discussed. For example, a 
wall display client can subscribe to an event that allows it to 
be aware of when a user approaches a certain range (similar 
to [23]) or when other entities are pointing in its direction. 
Lastly, the locator service also maintains information about 
data points, an entity unique to the SoD-Toolkit. The data 
point allows data to be assigned to specific physical locations 
in the room (through code or the visualization tool) and also 
supports proxemic properties already available to other 
entities. For example, a user can create virtual information 
spaces with different types of data in regions of a room or 

Figure 3. The visualization and prototyping tool for the SoD-Toolkit. (a) The tracked environment, (b) Entities tracked in the 
environment, (c) List of available entities and their current state, as well as clients currently connected in the environment. 

a 

b 

c 
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assign data to physical objects (e.g. a table) that can be 
interacted with via gestures or a device-based interactions. 

Central Server and Networking 
The central server is built into the locator service, and 
follows a client-server architecture. The server is 
implemented using the highly scalable and efficient Node.js 
platform and the underlying communication between the 
server and client libraries (on all platforms) use the 
Socket.IO networking module. These components are based 
upon the WebSocket protocol, which uses duplex 
bidirectional communication with significantly less 
overhead than other traditional methods based on HTTP. All 
information and data exchanged between the server and 
clients uses the standard JSON format. 

Through the modular design of the networking and client 
library components, the SoD-Toolkit allows researchers and 
developers to easily extend support for future devices and 
sensors with minimal development effort. As we discuss in 
the upcoming case studies section, this was a direct result of 
collaboration with industry partners building real-world 
deployable ubiquitous environments. 
Visualization Tool 
The visualization tool for the SoD-Toolkit (Figure 4) has 
three primary functions, (1) to allow researchers and 
developers to monitor and understand entities – sensors, 
users, data points and devices – that are being tracked in the 
environment, as well as provide the state of fused sensors, 
(2) to allow for quickly prototyping ubiquitous environments 
without the need for hardware, people or room space and (3) 
maintain calibration data for multiple sensors (discussed in 
the next section).  

In the visualizer tool, an overview list is provided, detailing 
the connected clients in the system, a list of available sensors 
in the environment, people and details on their location 
information, pairing state and if they currently hold any data, 
a list of devices and according details, and finally the location 
of data points and what data is contained in the data point. 
All entities that are visible in the tool, are user moveable 
components and easily configurable, allowing researchers 
and developers to physically remap sensors in the 
environment and dynamically change the layout of the 
environment with no additional code-required. 

The tool also allows for quickly prototyping environments 
by allowing sample sensor and device clients to be created 
and connected into the system. This allows researchers and 
developers to conceptually build applications, environments 
and multi-device interactions independent of hardware and 
sensors and physical space. However, should they later 
decide to add in real-world sensors and hardware into their 
virtual environment, their built application or environment 
will already support the hardware. Furthermore, researchers 
and developers can also prototype mixed fidelity ubiquitous 
environments, allowing for a mixture of real and virtual 
sensors and devices (e.g. a virtual leap motion and a real-
world Kinect sensor, with a fixed virtual wall display). 
Overall, the visualization tool is meant to be used throughout 
the development process – from development to deployment. 
Sensor-Fusion Approach 
As discussed earlier, one of our research goals was the novel 
exploration of ubiquitous environments with an expanded 
tracking space and multiple newer sensors. This goal 
requires sensor fusion techniques that are seamless in nature, 
as well as modular. The SoD-Toolkit, primarily relies on the 
Kinect (version 1 or 2) as the means for providing room-

  

 

Figure 4. Sensor Fusion using multiple Kinect sensors. (a) 2 uncalibrated Kinect sensors (overlapping) showing skeletons tracked 
in the environment. (b) Interface for calibration. (c) Properly calibrated environment with overlapping Kinect areas. 

 

a 

c 

b 
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based tracking, as opposed to more expensive and harder to 
setup motion-tracking systems [25]. Given the limitations of 
a single Kinect tracking system, we use a method of image 
comparison between multiple Kinect sensors to expand 
tracking area and improve accuracy.  

Generally, the sensor fusion method for multiple Kinect 
sensors in SoD-Toolkit works as follows: (1) A common 
object (e.g. a water bottle) is placed in the common viewing 
and tracking area of two Kinects, (2) Two points from each 
sensor's view are selected (based on the common object) in 
the Calibration interface in the Visualization tool and (3) One 
Kinect sensor's vector (the user selected reference sensor) is 
translated to another Kinect sensor's vector through a custom 
algorithm and saved. Figure 4 illustrates this specific process 
from the perspective of the Visualizer tool. The translation 
of the Kinect data is also reflected in the skeletal tracking, as 
the Location service compares skeleton data with the list of 
people being tracked in the environment. The location 
service then ensures that a person being tracked by multiple 
Kinect sensors is presented only once by comparing its 
position with the relative position of tracked users. This 
process is for two sensors at a time, and for larger spaces with 
multiple Kinect sensors, the process is repeated for each 
additional Kinect sensor and the reference sensor. 

Information from Kinect sensors and individual device 
orientations is also fused by the Location service to provide 
position and orientation of a device. This type of fusion, 
which we call a paired state – where a device and user are 
paired – then allows for multi-device interactions such as 
“flicking” and “pouring” [32] that require more accurate 
spatial-awareness. We also allow for sensor data from other 
sensors such as the iBeacon and Leap motion to augment 
existing information that can be inconsistently provided by 
Kinect sensors in certain situations (e.g. a user is too far away 
from the sensor for fine grained finger tracking or is out of 
consistent tracking range to determine distance). In code, a 
researcher or developer can simply choose which sensor to 
use, either based on confidence levels or preference. 
REAL-WORLD CASE STUDIES 
To demonstrate the functionality and test the feasibility and 
applicability of the toolkit for real-world deployments of 
spatially-aware ubiquitous environments, we present two 
real-world industry case studies. The implementations we 
discuss were built in parallel with the toolkit itself, and 
shaped many of the decisions that led to the features and 
design of the toolkit. Both of the systems described in this 
section were built with different teams of developers and 
industry partners with whom we collaborated closely with. 
For each case study, we briefly describe the system and 
reflect on lessons learned from the domain that influenced 
the design of the toolkit. 
Oil and Gas Exploration 
The very first ubiquitous environment built in parallel with 
the SoD-Toolkit was [34]. We worked closely with 
SkyHunter Exploration Ltd. who are located in Canada, and 

specialize in oil and gas exploration, and have proprietary 
technology that collects a variety of geo-spatial data. The 
data they collect is multidisciplinary, and ultimately 
increases the chances of discovering oil and gas 
significantly. Prior to building the ubiquitous environment, 
much of their collaboration with the stakeholders in the 
exploration and decision-making processes (i.e. 
geophysicists, geologists) was paper-based and ineffective 
due to large volumes of geo-spatial data, as well as the 
reliance on single user non-collaborative tools. Upon 
building the environment with spatial-awareness and various 
multi-device interactions, we received positive feedback in 
areas such as collaboration and interaction with geospatial 
data [34]. 
Emergency Response 
Following the first industry case study for the toolkit and the 
adjustments made based on developer and industry feedback, 
we then continued to the emergency response domain. We 
collaborated with C4i Consultants, also located in Canada, 
who specialize in training software for military operations 
and emergency response. They provide a software tool ePlan, 
which is designed to simulate large scale emergencies, and 
train civic operators on how to respond with different types 
and scales of emergencies. Given the collaborative nature of 
emergency response planning environments and the number 
of individuals and devices that can be involved in the 
decision-making process, this was an ideal candidate for 
building a ubiquitous environment. We built a ubiquitous 
emergency response environment that built upon ePlan to 
drive simulations [4]. It allowed for larger groups of different 
stakeholders (e.g. fire, police, hazmat) to collaborate and 
communicate within a spatially-aware environment that 
contained a large wall display, tablets and a digital tabletop. 
Spatial interactions such as “flick” and “pour” allowed 
transfer of vital emergency information amongst the 
different stakeholders and their devices. 
Lessons Learned 
As we began to develop the toolkit in collaboration with our 
first industry partner, we relied exclusively on the Microsoft 
Kinect sensors for spatial-awareness and tracking in the 
environment. However, when developers deployed the 
system built with the toolkit and received feedback from 
system users about the general uncomfortableness of 
multiple highly visible tracking sensors in an environment 
(particularly in an office or meeting context), this facilitated 
our change in the toolkit from single sensor rigidity to multi-
sensor flexibility. We also provided a set of common gestures 
from multi-device interactions (flick, pour, bump from [32]) 
for the developers to use for information transfer tasks, but 
our feedback from them indicated the need for accessing raw 
information to customize/ explore more detailed interactions, 
particularly as the skill on the development team was varied. 

After the subsequent changes made in the toolkit based on 
feedback from developers in the first industry project, we 
then worked closely with a second industry partner in a 
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different domain, emergency response. A primary challenge 
for developers of ubiquitous environments in this domain, is 
information is distributed across the room, usually in highly 
concentrated regions around specific personnel. At the time, 
the toolkit wasn’t optimized enough to handle regions of 
coarse and fine grained tracking. This lead to the change of 
allowing for sensor transition, depending on the sensors 
available in the environment. The developers and industry 
partner also expressed interest in applying of proxemic 
interactions to region specific data, which led to the 
development of data points in the toolkit. Lastly, the 
developers and industry collaborators faced challenges in 
developing their ubiquitous environment due to limited 
access to highly confidential and private emergency response 
environments. To help facilitate developers, we found it 
important to enable them to develop unencumbered by room 
access, devices or sensors. This created features in the toolkit 
for easy prototyping, allowing developers to mock 
ubiquitous environments and multi-device interactions. 
DISCUSSION 
Implementing and designing larger ubiquitous 
environments, applications and multi-device interaction 
techniques is an extremely complicated task. We introduced 
the SoD-Toolkit that provides researchers and developers 
with a number of tools that support the design, prototyping 
and implementation of deployable multi-device, multi-
sensor ubiquitous environments, applications and 
interactions. We allow researchers and developers to choose 
their own sensors and devices to build ubiquitous 
configurations (regardless of owning hardware) and use the 
tools provided to explore their ubiquitous designs. In this 
section, we compare SoD-Toolkit to other approaches using 
Olsen’s thematic framework approach [6], similar to [13].  
Problem not previously solved 
A number of toolkits such as XDStudio [27], Conductor [9] 
and Panelrama [43] reduced the barrier of entry for 
researchers and developers in creating and exploring 
ubiquitous environments, applications and interactions. SoD-
Toolkit builds upon many of the concepts in these toolkits, 
and further extends the work with greater support for a 
diverse set of devices and sensor platforms, multi-sensor 
mappings, and the ability to explore novel multi-device 
interaction combinations. We also focused on providing a 
toolkit that is easily configurable and deployable in real-
world contexts, a common criticism of toolkits for ubiquitous 
environments [28, 29]. The toolkit also draws upon previous 
work in proxemic interactions and applications (such as 
Proximity Toolkit [23] and Grouptogether [24]), 
generalizing ubiquitous approaches, and spatial awareness, 
allowing for the exploration and development of different 
facets of research in ubiquitous environments, such as multi-
device interaction techniques and sensor fusion approaches.  

Another limitation of several existing toolkits lies in the 
physical reliance on sensor and device hardware for 
prototyping and developing ubiquitous environments and 

multi-device interactions. We allow researchers and 
developers to explore multi-device, multi-sensor ubiquitous 
environments without the need for all hardware or sensor 
components, which becomes increasingly important and 
relevant as the underlying technology moves rapidly both in 
terms of cost and capability. Reducing this limitation allows 
for an expansion of research into ubiquitous environments. 
Generality 
To demonstrate the expressivity of the building block 
components of the SoD toolkit [6], we discussed two industry 
case-studies that included interaction techniques and 
scenarios considered state of the art [4, 34]. We also 
highlighted the versatility and generality with these industry 
case studies, but through them recognized the limitations and 
strengths of the toolkit. A number of limitations of the 
toolkit, particularly in its focus for providing larger 
ubiquitous environments stem from the usage of the Kinect 
hardware. The Kinect does not provide the same level of 
extremely accurate tracking by large scale systems (e.g. 
Vicon) even with multiple Kinect sensors. This is further 
enhanced when coarser grained sensors (e.g. iBeacons) are 
used entirely. However, based on our collaborations with 
industry partners, we believe that for more real-world 
deployments of ubiquitous environments, this is a necessary 
trade-off.  This provides an advantage, as hardware and 
sensor limitations are nullified by simply using existing 
hardware and sensor setups to develop novel and more 
futuristic multi-sensor, multi-device ubiquitous 
environments, applications and interactions. Furthermore, 
the toolkit can easily be extended to support newer sensor 
and hardware platforms as they emerge.  
Reducing Solution Viscosity 
Compared to other methods to develop real-world 
deployable multi-sensor, multi-device ubiquitous 
environments, applications and interactions, the SoD-Toolkit 
dramatically lowers the development viscosity [34] by 
providing a flexible architecture that allows for “expressive 
leverage” [13]. The design of the architecture also allows for 
the potential to transform several existing multi-device 
toolkits (e.g.  XDStudio [27]) into multi-sensor and spatially-
aware toolkits. Furthermore, as the toolkit  abstracted and 
simplified many challenges in creating complex ubiquitous 
environments (as discussed previously), novice researchers 
and developers can focus on creating novel systems and 
interactions with minimal overhead, while those with more 
experience can freely modify different aspects of the toolkit, 
such as sensor-fusion approaches and sensor support. 
Empowering new design participants 
The lack of real-world deployable examples of larger multi-
device ubiquitous environments (prototypes or otherwise) 
despite widely available sensors and devices, indicates a 
need for adequate toolkit support for researchers and 
developers. In the research literature, a number of elicitation 
studies have been performed to study interactions in 
ubiquitous environments, but very little follow-up work is 
typically performed, particularly from an implementation 
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perspective. Additionally, multi-device explorations with 
newer forms of devices in ubiquitous environments (e.g. 
wearables) is still very minimal in the research literature, 
particularly in multi-sensor spatially-aware ubiquitous 
environments [13]. SoD-Toolkit focuses on lowering the 
threshold for non-expert programmers, researchers and 
interaction designers and empower them to explore with new 
and existing sensor and device technologies for real-world 
deployments and contexts. To date, we have not performed 
an in-depth study with developers for the toolkit, but we have 
worked closely with developers and industry from the onset 
of implementation and design of the toolkit. This remains as 
future work, but we believe the toolkit is an important step 
in exploring novel larger scale ubiquitous environments with 
multiple sensors and multiple devices, as well as necessary 
for exploring novel multi-sensor, multi-device interactions. 
Power in combination 
Similar to prior toolkits, SoD-Toolkit combines hardware and 
sensor management, sensor fusion techniques, networking, 
disributed interfaces and prototyping into a single toolkit. As 
mentioned earlier, the architecture design allows for these 
components to be extremely decoupled, allowing for the 
addition or subtraction of different approaches. Additionally, 
as the SoD-Toolkit supports multiple platforms, it already 
integrates with several major UI frameworks (e.g. Objective 
C and Xcode), meaning developers can both prototype and 
build upon commercially available hardware. 
Can it scale up? 
In building multi-sensor, multi-device spatially-aware 
ubiquitous environments, particularly ones designed for 
deployment, the scalability of the sensors that provide spatial 
awareness for multi-device interactions becomes an issue. 
For toolkits such as Panelrama [43] and Conductr [9], the 
solutions are scalable as they do not rely on sensors and use 
scalable web-based technologies (e.g. HTML5). 
Alternatively, toolkits such as Proximity Toolkit [23] and 
XDKinect [28], are either scalable but face challenges for 
real-world deployment due to complex setups or are limited 
in functionality due to limited sensor support. Undoubtedly, 
balancing spatial awareness and scalable solutions is 
difficult, especially when not using motion-tracking systems 
that aren’t feasible for deployment [28, 29]. The design of 
SoD-Toolkit supports multiple low-cost off the shelf sensors 
that can be used in concert, for a larger spatially-aware 
ubiquitous environment. Additionally, as SoD-Toolkit allows 
researchers to choose their sensors and devices, researchers 
and developers can choose their granularity of spatial-
awareness in a ubiquitous environment.  
CONCLUSION 
The SoD-Toolkit offers a rich set of tools and software 
libraries for researchers and developers to prototype and 
develop deployable multi-device, multi-sensor interactions, 
applications and environments. We allow researchers and 
developers to easily “plug-and-play” popular off-the-shelf 
hardware (sensors and devices) to build their ubiquitous 
environments, while removing network and device 

management, sensor fusion and complex algorithmic 
challenges. The toolkit abstracts these challenges into an 
easily accessible API and events, integrating with several 
existing UI development software tools. As a result, the 
toolkit reduces complexity and lowers the barrier of entry for 
researchers and developers to design larger and more 
intricate multi-device ubiquitous environments. The toolkit 
also allows for future explorations of novel multi-device 
interaction techniques, multi-sensor designs and other 
unique ubiquitous environments that can be deployed in new 
and unexplored contexts and domains. Future work for the 
SoD-Toolkit includes integrating powerful device-centric 
sensors like the Google Tango, and gesture detection for 
different types of interactions in ubiquitous environments.  
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