5. Write proofs of each of the following claims about functions of a positive integer
n.
a. $n^{2}-n \in \Omega\left(n^{2}\right)$

- State the definition: $f \in \Omega(g)$:

There exist constants $c>0$ and $N_{0} \geq 0$ such that $f(n) \geq c \cdot g(n)$ for all $n \geq N_{0}$.

- $n^{2}-n \geq c \cdot\left(n^{2}\right)$
$n^{2}-n \geq c \cdot\left(n^{2}\right)$
$n^{2}\left(1-\frac{1}{n}\right) \geq c \cdot n^{2}$
$1-\frac{1}{n} \geq c$

Since $n>0$ (question states that n is a positive integer),

$$
1-\frac{1}{n}<1
$$

then

$$
c \leq 1-\frac{1}{n}<1
$$

and

$$
c<1
$$

Now we know c is a constant such that $0<c<1$.

- Let's pick $c=\frac{1}{2}$,
then

$$
1-\frac{1}{n} \geq \frac{1}{2}
$$

and

$$
\begin{aligned}
& 2 n-2 \geq n \\
& n \geq 2
\end{aligned}
$$

b. $n^{3} \in o\left(n^{4}\right)$

- State the definition:
$f \in o(g)$:
For every constant $c>0$ there exists a constant $N_{0} \geq 0$ such that

$$
f(n)<c \cdot g(n)
$$

for all $n \geq N_{0}$.

- $n^{3}<c \cdot n^{4}$
$n^{3}<c \cdot n \cdot n^{3}$

$$
\begin{aligned}
& c n>1 \\
& n>\frac{1}{c} \text { for all } c>0
\end{aligned}
$$

6. Refer back to question 8 in Tutorial 4, where we discovered the following:

- $T_{\text {body }} \leq 4 i+4$
- $T_{\text {test }}=1$
- Loop will execute $n-1$ times in the worst - case.

For the loop body:

$$
T_{b o d y} \leq 4 i+4
$$

Since $1 \leq i \leq n-1$

$$
\begin{aligned}
4 i+4 & \leq 4(n-1)+4 \\
& =4 n
\end{aligned}
$$

Loop cost:

$$
\begin{aligned}
& (n-1)(4 n)+(n-1+1)(1) \\
& 4 n^{2}-4 n+n \\
& 4 n^{2}-3 n
\end{aligned}
$$

Since $n \geq 1$

$$
4 n^{2}-3 n \leq 4 n^{2}
$$

$$
4 n^{2} \in O\left(n^{2}\right)
$$

$$
4 n^{2} \leq c \cdot n^{2} \text { if } c \geq 4
$$

For splitting the sum, refer to page 1152 of CLRS textbook.

