5. Write proofs of each of the following claims about functions of a positive integer n.

a. $n^2 - n \in \Omega(n^2)$ • State the definition: $f \in \Omega(g)$: There exist constants c > 0 and $N_0 \ge 0$ such that $f(n) \ge c \cdot g(n)$ for all $n \ge N_0$. • $n^2 - n \ge c \cdot (n^2)$ $n^2 - n \ge c \cdot (n^2)$ $n^2(1-\frac{1}{n}) \ge c \cdot n^2$ $1-\frac{1}{n} \ge c$ Since n > 0 (question states that n is a positive integer), $1 - \frac{1}{n} < 1$ then $c \le 1 - \frac{1}{n} < 1$ and *c* < 1 Now we know c is a constant such that 0 < c < 1. • Let's pick $c = \frac{1}{2}$, then $1 - \frac{1}{n} \ge \frac{1}{2}$ and $2n-2 \ge n$ $n \ge 2$ **b.** $n^3 \in o(n^4)$ • State the definition: $f \in o(g)$:

For every constant c > 0 there exists a constant $N_0 \ge 0$ such that

$$f(n) < c \cdot g(n)$$

for all $n \ge N_0$.

• $n^3 < c \cdot n^4$ $n^3 < c \cdot n \cdot n^3$ cn > 1 $n > \frac{1}{c}$ for all c > 0

6. Refer back to question 8 in Tutorial 4, where we discovered the following:

- $T_{body} \le 4i + 4$
 - $T_{test} = 1$
 - Loop will execute n-1 times in the worst case.

For the loop body:

$$T_{body} \le 4i + 4$$

Since $1 \le i \le n - 1$
 $4i + 4 \le 4(n - 1) + 4$
 $= 4n$

(n-1)(4n) + (n-1+1)(1) $4n^2 - 4n + n$ $4n^2 - 3n$

Since $n \ge 1$ $4n^2 - 3n \le 4n^2$

$$4n^2 \in O(n^2)$$

$$4n^2 \le c \cdot n^2 \text{ if } c \ge 4$$

For splitting the sum, refer to page 1152 of CLRS textbook.