
Much of the answers are based off of the slides. The slides are very informative, 
so please review those if you haven’t yet, or if you missed class. 

Fundamental Concepts 
1. State the definition of each of the following. 

a. Precondition 
A condition that must be satisfied when the execution of a program 
begins. This generally involves the algorithm’s ​inputs​  as well as initial 
values of ​global variables​ . 

b. Postcondition 
A condition that should be satisfied when the execution of a program 
ends. This might be 

● A set of relationships between the values of inputs (and the values 
of global variables when execution started) and the values of 
outputs (and the values of global variables on a program’s 
termination), or 

● A description of output generated, or exception(s) raised. 
c. correctness of an algorithm (for a given problem) 

Suppose that a problem is specified by a ​single  
precondition-postcondition pair ​(P, Q)​ . An algorithm for this problem is  
correct if it satisfies the following condition: If 

● Inputs satisfy the given precondition ​P​  and 
● The algorithm is executed 

then 
● the algorithm eventually halts, and the given postcondition ​Q​  is 

satisfied on termination. 
d. partial correctness of an algorithm (for a given problem) 

An algorithm is partially-correct if 
● Inputs satisfy the precondition ​P​ , and 
● Algorithm or program ​S​  is executed, 

then either 
● S​  halts and its inputs and outputs satisfy the postcondition ​Q 

or 
● S​  does not halt, at all. 

e. termination of an algorithm (for a given problem) 
If 

● inputs satisfy the precondition ​P​ , and 
● algorithm or program ​S​  is executed, 

then 
● S​  is guaranteed to halt! 

f. loop invariant 



A condition ​R​  is a Loop Invariant if: 
● Base Property: ​P​  implies that ​R​  is True before the first iteration of 

the loop and after testing ​G 
● Inductive Property: if ​R​  is satisfied at the beginning of the ​i​ th 

execution of the loop body and there is an ​i​  + 1st execution, then 
the loop invariant holds immediately before that execution 

g. loop variant 
A function of ​f​ L​  of program variables that satisfies the following additional  
properties: 

● fL is integer-valued 
● The value of ​f​ L​  is decreased by at least one every time the loop 

body S is executed 
● If the value of ​f​ L​  is less than or equal to zero then the loop guard ​G 

is False (ie., the loop terminates) 
2. Explain how “correctness,” “partial correctness,” and “termination” are related. 

partial correctness + termination => total correctness 

Background: Propositional Logic 
1. Give truth tables for each of the following expressions. (Consult your textbook for MATH 

271 or 273, or one of the ​references for discrete mathematics recommended for this 
course​ if you do not know what a “truth table” is.) 

a. p ∨ q  
b. p ∧ q 
c. p ⇒ q 
d. p ⇒ (q ⇒ p) 
e. p ⇔ ¬ p 

p q p v q p ∧ q p ⇒ q p ⇒ (q ⇒ p) p ⇔ ¬ p 
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2. The expression “p ∨ q” is spoken aloud as “p or q,” and the expression “p ⇒ q” is 

spoken aloud as “p implies q.” Do these expressions have the truth values that you 
would expect, considering this information? 

Let’s just say there are unexpected values… 
If they do not always have the truth values you would expect then how (and when) are 
they different than expected? 

“p or q” can be both inclusive and exclusive. Inclusive or means ​either​ p or q,  

http://pages.cpsc.ucalgary.ca/~jacobs/Courses/cpsc331/W17/syllabus/math_background.html
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whereas exclusive or means ​either​ p or q ​but not both​. 
“p implies q” is false if p is true but q is not true (false). This statement is a 
one-way conditional, and p→q is always true if p is false. This should not be 
confused with p↔q, which is biconditional and is only true if p and q have the 
same truth values. 

3. Are the following expressions well defined? What else (beyond the material presented in 
the lecture notes) would you need to interpret these? 

a. p ∧ q ∨ r 
b. p ∨ ¬ p ∧ q 
c. p ⇒ p ⇒ p 

parenthesis 
4. This problem might be helpful if you were not sure about your answer for the previous 

one: Show that the following two expressions have different values when p is false. 
a. p ⇒ (p ⇒ p) 

p = F 
F ⇒ (F ⇒ F) 
F ⇒ T 
Since the condition is false, it doesn’t matter what the implied value is,  
and the statement is true. 

b. (p ⇒ p) ⇒ p 
p = F 
(F ⇒ F) ⇒ F 
T ⇒ F 
Since the conditional is true, then the implied value should also be true.  
Since the implied value is actually false, the statement is false. 

5. Some (but not all) of the logical operators we are considering are available as operators 
in Java. 

a. How is the expression 
p ∨ q ∧ r 

expressed in Java (as a function of p, q, and r)? 
p || q && r   which is the same as 
p || (q && r) 

b. If you did not add parentheses, but simply replaced the operators ∧ and ∨ with 
their equivalents in Java, then the result is equivalent either to 

(p ∨ q) ∧ r 
Or 

p ∨ (q ∧ r) 
Which one? Why? 

p v (q ∧ r), because in Java, equality operators will be evaluated first, 
then  &&, then ||. Parenthesis can be added to change the order. 

6. You should have seen propositional logic in a prerequisite course such as MATH 271 or 
273 (or PHIL 279 or 377). However, some of the notation is probably different! For your 



own reference, summarize the differences in notation that you find when comparing the 
presentation of propositional logic in these courses. 

This depends on what courses you took, but you can find a decent summary here 
if required: ​http://cas2.umkc.edu/philosophy/vade-mecum/3-1.htm 

Proof Rules: Simple Applications 
1. Recall that the proof rules introduced in class can be used to reduce the problem of 

proving the correctness of algorithms to that of proving claims that do not have anything 
to do with algorithms at all (and that can be proved using the kind of proof techniques 
introduced in MATH 271 or 273). 

2. List the claims that should be established to conclude each of the following. 
a. { true }  i := 0    { 0 ≤ i ≤ n } 

Trivial, as the precondition is always true, meaning i = 0, and 0 ≤ i. 
Assuming n is a positive integer​, 0 ≤ n, therefore i ≤ n and 0 ≤ i ≤ n. 

b. { 0 ≤ i ≤ n }  i := i + 1   { 1 ≤ i ≤ n+1 } 
Precondition P implies i​old​ ≤ n, ∴ i = i​old​+1, and i​old​ = i-1. 
Since n ≥ i​old​, then n ≥ i-1, and n+1 ≥ i. 
Then we have 1 ≤ i​old​ < i ≤ n + 1 ∴ 1 ≤ i ≤ n+1. 

c. { i ≥ a }   if (b ≥ a) then i := b else continue end if   { (i ≥ a) ∧ (i ≥ b) } 
Case 1: b ≥ a 

i := b 
i = b ≥ a ∴ i ≥ a 
i = b ∴ i ≥ b 
Then (i ≥ a) ∧ (i ≥ b). 

Case 2: b < a 
i ≥ a > b ∴ i ≥ b 
Then (i ≥ a) ∧ (i ≥ b). 

d. { x = 0 }   x := x + 1; x := x + 1   { x is an even integer } 
x​0​ = 0 
x​1​ = x​0​ + 1 = 0 +1 = 1 
x = x​1​ + 1 = 1 + 1 = 2 
Since x%2 = 2%2 = 0, x is an even integer. 

3. Which of the programs listed in the previous question are partially correct? 
For all of the above, algorithm/program ​S​  halts (single statements only). Then 
given inputs that satisfy the precondition ​P​ , and the subsequent claims, we can 
see that postcondition ​Q​  is always satisfied. This satisfies the definition of partial 
correctness. 

 
Linear Search solution​: There is already a link on the course website (schedule), for the 
tutorial #2 supplement. I expect the file will be made public once all tutorial sections have been 
completed. 
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